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ABSTRACT 

In this thesis, a tangential turnstile antenna is modified and verified for the Petite 

Amateur Navy Satellite (PANSAT). The Numerical Electromagnetics Code (NEC) is used 

to model the antenna system. The final design provides a circularly polarized, 

omnidirectional radiation pattern with maximum nulls of-2.7 dBi. Two alternative antenna 

feed systems are proposed. 
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I.    INTRODUCTION 

A. OBJECTIVES 

The objective of this thesis is to verify the current design of the Petite Amateur 

Navy Satellite (PANSAT) Antenna System and suggest modifications as necessary. The 

Numerical Electromagnetics Code (NEC) is used to model the PANSAT antenna system. 

This thesis also describes the integration of the Launch Vehicle Interface (LVI), 

and reports the results of subsequent electromagnetic performance analysis. The original 

length, orientation and the position of antenna elements on the PANSAT body were 

modified until they met specifications. The performance analysis consisted of evaluation 

of radiation patterns, antenna input impedance and polarization of the antenna system and 

was repeated after each new modification of antenna elements. The scope of this thesis is 

limited to describing the modification, optimization, verification of the antenna system and 

the design of an antenna feed system for PANSAT. 

B. THE PANSAT PROJECT AT NPS 

The PANSAT program at the Naval Postgraduate School was started in 1989 and 

sponsored by the Navy Space Systems Division (N63).   Since 1989, PANSAT has been 

under construction by the Space Systems Academic Group (SSAG). 

Over the years, expensive, complex satellites have been replaced by small, 

inexpensive Low Earth Orbit (LEO) satellites. LEO satellites can provide real time, wide 

area communications through the use of inter-satellite networks, which can transfer 

information before relaying it to the ground station. 



Satellite communications lost as a result of hostile actions are hard to replace in a 

very short time, but can be recovered by small low cost LEOs that can be quickly 

developed and produced. 

PANS AT is a "stepping stone" for development of small LEO satellites [Ref. 1]. 

The PANS AT project enhances the educational experience of NPS students and provides 

educational opportunities to research space related topics. It also provides the 

opportunity to design and improve space-based hardware. Learning opportunities 

continue after the launch of the satellite, by providing a vehicle for satellite 

communications experiments. PANS AT is a 150 pound, 16 inch diameter, 26 sided 

polyhedron body designed for launch as a space shuttle secondary payload. Figure 1 

shows the shape of the space craft without antennas. 

PANSAT is a small spread-spectrum communications satellite. It is a tumbling 

spacecraft that will be completed in 1996, and will most likely be launched using the space 

shuttle Get Away Special (GAS) canister under the HitchHiker program. The launch will 

place PANSAT in a low earth orbit with an inclination of 28 degrees. 
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Figure 1. PANSAT General, Bottom, and Side Views. 

PANS AT is constructed of 6061-TG aluminum. The 19-inch diameter spacecraft 

is built around the main load bearing cylinder, which connects to the main lower 

equipment plate. The other end of this cylinder is the Launch Vehicle Interface (LVI). 

The communications payload of PANSAT consists of a direct sequence, spread 

spectrum (DS/SS), differentially encoded binary phase shift-keyed (DBPSK) 

communications system, which is the first DS/SS system designed for amateur radio 

(HAM) use. It has an operating center frequency of 436.5 MHz, a bit rate of 9,600 bps 

and 4 MB of memory for storage, and is able to send and receive messages as it passes 

overhead for store-and-forward communications.   The AX.25 amateur radio data link 



layer protocol (based on CUT X.25 protocol) will be utilized in the PANSAT 

communications link. 

PANSAT has many potential applications. By virtue of DS/SS, it has a low 

probability of intercept, an important feature for downed-pilot rescues. It can provide 

logistic traffic, over-the-horizon communication, and communications with remote areas. 

The PANSAT includes the following major subsystems: 

• Digital Control Subsystem (DCS) 

• Electrical Power Subsystem (EPS) 

• Communications Subsystem (COMM) 

• Ground Control 

The DCS provides overall control of PANSAT, monitoring and controlling the 

EPS and COMM subsystems by transmitting operating data to and receiving instruction 

from ground controllers. The EPS consists of seventeen 256 cm2 solar panels and two 

batteries to store and provide power for satellite systems The COMM system consists of 

two fully redundant transceivers. The EPS provides +15V and +5 V power levels, and the 

DCS controls power. The COMM subsystem sends uplinked messages to the DCS for 

processing and receives messages downlinked from the DCS. Figures 2 and 3 show the 

subsystem configuration and location of PANSAT. 
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C. DEVELOPMENT OF THE PANSAT ANTENNA SYSTEM 

A design for the PANSAT antenna system was proposed by Daniel A. Ellrick in 

his NPS Thesis, "An Antenna Design for PANSAT Using NEC", in June, 1991. PANSAT 

is a tumbling satellite; it doesn't have any attitude control or propulsion system. As a 

result, the satellite antenna system must be as omnidirectional as possible. Ellrick noted 

that the ground stations utilize simple linearly polarized antennas, which are common for 

amateur radio users. Utilizing a circularly polarized antenna will help avoid large 

polarization losses that occur between linearly polarized ground antennas and linearly 

polarized signals coming from the satellite at arbitrary angles. A turnstile antenna has been 

proposed, among other candidates such as the Hula-Hoop antenna and the resonant 

quadrifilar helix. Ellrick regarded the Turnstile Antenna as "the most promising approach, 

based on its simplicity and flexibility" [Ref. 1]. 

Since Ellrick's work, the PANSAT's physical structure has been modified by 

adding the Launch Vehicle Interface (LVI). Integration of the LVI will affect the 

performance of the current design, and the first goal of this thesis is to integrate the LVI 

into the NEC model. After this step, the results of performance analysis will determine the 

succeeding steps. 

The PANSAT antenna system must meet the following electrical specifications: 

• Minimum antenna gain of-3 dBi. 

• Approximately omnidirectional radiation pattern. 

• Circular polarization with an axial ratio greater than 0.42. 



• Operational bandwidth of 2.5 MHz with center frequency of 436.5 MHz. 

Mechanical specifications for the antenna system must also be addressed. The 

rectangular parts of the PANSAT body are covered with solar cells. Consequently, these 

rectangular parts are not suitable for mounting of antenna elements, which should not 

shade the solar cells. Therefore, the optimum locations for antenna elements are the 

triangular parts of the PANSAT body. PANSAT is to be launched from a shuttle Get 

Away Special (GAS) canister. The maximum allowable clearance between the antenna 

element end point and the inner wall of the GAS canister is 0.5 inches. The available 

volume for antennas is therefore limited. Figure 4 shows the triangular mounting surfaces 

and the general arrangement of the PANSAT body in the GAS Canister. 
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Figure 4. Triangular Surfaces and General Arrangement of the PANS AT in the GAS 
Canister. 



D.    OPTIMIZATION OF THE ANTENNA DESIGN 

The PANSAT antenna system is improved through a series of steps. Each step is 

determined by the results of the previous step. First, NEC is run for the PANSAT model 

without the LVI. The LVI is added as a requirement of change of satellite geometry and 

NEC is rerun. The results of the performance analysis are then compared. 

Three physical features of the antenna elements to be modified, are listed below in 

the modification order: 

• Location. 

• Angle orientation. 

• Element length. 

Since change in the location of antenna elements affects the performance more 

than other two, it is the first modification. After the location is decided, the next step is to 

orient the antenna elements in the best angle configuration. Variations of element lengths 

change only the input impedance, thus it is the last modification. After the locations and 

angle orientations are found, the lengths of antenna elements can be changed for the 

desired impedance. 

In the first modification, the goal is to find locations where the worst nulls are 

better than -3 dBi. For each location, the antenna radiation pattern, axial ratio, directive 

gain, and antenna input impedances are calculated. This process continues until element 

locations which produce the desired performance are found. 



Second, the orientation angle of antenna elements is changed to find the optimum 

gain. This goal is to produce nulls no worse than -3dBi. 

In the third modification the length of antenna elements is varied and the input 

impedance of antenna elements is noted. This modification is for finding the real part of 

the input impedance equal to 50Q or the imaginary part equal to 0. An antenna feed 

system is then designed, based upon on the input impedance of the antenna elements. 

10 



II. THE TANGENTIAL TURNSTILE ANTENNA SYSTEM 

A. TANGENTIAL TURNSTILE ANTENNA 

If two-half wave dipoles with equal magnitude and current in phase quadrature are 

crossed, this arrangement can produce a circular pattern at broadside. 

Two crossed half-wavelength dipoles, fed in phase progression at their centers is 

called a "turnstile antenna". This configuration results in an almost omnidirectional 

broadside radiation pattern with nearly circular polarization [Ref. 2], because two crossed 

half-wavelength dipoles will fill in the "donut hole" in the radiation pattern of a single 

dipole. 

For satellite applications, four monopoles mounted on the satellite body, spatially 

perpendicular to each other, can provide the same radiation pattern and polarization 

[Ref. 1]. Figure 5 shows a turnstile antenna on a cylindrical body. 

11 



Figure 5. The Representation of a Turnstile Antenna on a Cylindrical Body. 

A tangential turnstile antenna is formed after tilting the four monopole antenna 

elements upward or downward, and then rotating all of the elements 90° clockwise or 

counter clockwise. Figure 6 shows the upward raised antenna elements on the XZ and YZ 

planes. 

12 



Each  antenna element is tilted 
a deg.   up on theXZ and YZ plane 

z 

— Y 

Antenna elements are rotated   ß =   90 deg.   clockwise 

Figure 6. Formation of a Tangential Turnstile Antenna. 
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B.    LVI INTEGRATION 

After meeting with the engineers on the PANSAT team, a wire grid numerical 

model of the LVI was developed as detailed in the subsequent paragraphs (see Figure 7). 

Each wire is divided into segments. Wire segment sizes are chosen according to pre- 

determined guidelines to assure accuracy of results. Increasing the number of segments 

beyond some number does not contribute to the results, but rather increases computation 

time. 

The wires should follow the physical outline of the structure as closely as possible. 

There is no explicit restriction for the angle of intersection of wire segments in NEC. The 

center of one wire segment should not approach another wire segment closer than a 

distance greater than the sum of the radii of the two wire segments [Ref. 3]. The length of 

the wire segments should be less than 0. IX at the desired frequency. The radius of wires 

in the wire grid is to be adjusted to meet the equal area rule for flat surfaces of the LVI 

[Ref. 3]. Piece-wise linear wire segments are used for round, curved surfaces. 

Using NEC guidelines, the LVI NEC model is constructed. The first model has 

186 segments on 125 wires. This LVI model is added to the PANSAT model and NEC is 

run. The number of wires is then decreased and the results of the NEC output files are 

compared. This procedure continues until the optimum number of segments and wires is 

found. When the segment number reaches 108 on 104 wires, it is observed that the 

performance of the entire model stabilizes. 

14 



Figure 6 shows the side and top wires of the final NEC wire grid model of the 

LVI. 

side view     \ 

Figure 7. Side and Top View of LVI Wire Grid Model. 
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Table I shows the comparison of NEC modeling guidelines as applied to the model 

of the LVI. 

NEC GUIDELINES LVI Model 

Segment length < 0.1X Segment length < .079 A, 

Distance between the centers of two 

approaching segments > sum of the radii of 

these approaching segments 

Verified 

Equal area rule Verified for flat surfaces 

Table I. Comparison of NEC Guidelines Used in the Model of the LVI 

The final NEC wire grid model for PANS AT consisted of 488 segments on 296 

wires. Addition of extra wires to the wire-grid model does not affect the nulls, gain or 

impedance of the current design, except for increasing the computation time 

tremendously. The average gain changed from 1.00 to 0.96, and the worst null changed 

from -3.5 to -3.8 dBi during adjustments of wire numbers and wire segments. 

After the final PANSAT wire grid model with the LVI is developed and NEC 

output results are recorded, the model for PANSAT without the LVI is also run for 

comparison of the performance with and without the LVI. Figure 8 depicts the location of 

antenna elements on the PANSAT body with the LVI. 

16 



Figure 8. Location of Antenna Elements on PANS AT with the LVI. 

The model with the LVI shows the worst null is -3.8 dBi. It provides 

approximately circular polarization with an average axial ratio of 0.5 and a radiation 

pattern that is almost omnidirectional. The deterioration of the worst null is the main 

difference found in the comparison of Table II. 

17 



Parameter Before LVI After LVI 

Worst null -3.06 dBi -3.8 dBi 

Axial Ratio Minimum 0.0007 0.00073 

Axial Ratio Maximum 0.99 0.99 

Axial Ratio Average 0.46 0.49 

Polarization Elliptical Elliptical 

Antenna Input Impedance 

(for the same length) 

72.3 +j 0.2Q 

(each antenna element) 

65.4+J8.5Q 

(each antenna element) 
Average gain .96 .96 

Table II. Comparison of Key Parameters of Designs before and after the LVI. 

The LVI produced a worst case null 0.74 dB deeper than without the LVI. When 

the above results are compared with PANSAT antenna specifications, the LVI addition 

meets the performance requirements except for the worst null, which should not exceed -3 

dBi. 

If feed loss and other unpredicted loss exceeds 3 dB, the minimum gain of the 

antenna system would be less than -6 dBi. To prevent this, the minimum gain of the 

antenna needs to be improved. 

18 



C.    MODIFICATION AND OPTIMIZATION OF THE ANTENNA 
DESIGN 

The antenna system must be modified, and its performance optimized to meet the 

-3 dBi maximum null requirement by varying the following parametrers: 

Independent Parameters: 

• Position of the antenna elements on the PANS AT body. 

• Angle between the antenna elements and the PANSAT body and angle of 
one element relative to the other elements. 

• The length of the antenna elements. 

Dependent Parameters: 

• Maximum, minimum directive gain. 

• Input impedances of antenna elements. 

• Axial ratio. 

In the modification process, one of the independent parameters is changed while 

other independent parameters are kept fixed. The dependent parameters are checked for 

each change in independent parameters. The goal is to find the values of independent 

parameters which most closely meet antenna performance specifications. 

Adjustments in the above parameters have different effects on the performance of 

the antenna system. After a few experiments, it is determined that position and angle of 

the antenna elements relative to the body of the PANSAT and each other have major 

impact on directive gain minima. Increases or decreases in length will change the input 

impedance more than the gain. 

19 



1.    Location of Antenna Elements 

The angle of the antenna elements is fixed, and their locations on the PANSAT 

body are moved from the LVI side to the center of the upper edge of triangular surfaces 

on the side opposite the LVI. Antenna element length is 0.167 m, with radius 0.0045 m. 

The angle between antenna elements and the XY plane is 45° and each antenna element is 

rotated 90° clockwise. This is the first location (Figure 9). 

In this case a minimum gain of-8.8 dBi, and an input impedance of 45.2+J2.8Q are 

observed, with an average gain of 0.88. Minimum and average gains are low. The 

antenna elements have four segments, and the source is on the segment at the connection 

point to the body. Adjacent segments are 8.5% different in length. The antenna elements 

are then divided into five segments, and the source is on the second segment from the 

connection point, so that segments adjacent to the source have the same length as the 

source segments. The second run produces a minimum gain of -8.08 dBi, input 

impedance of 47.9+J5.3Q, and an average gain of 0.98. Minimum gain is still low. As a 

check on the accuracy of the NEC solution, the average gain and element current were 

checked. Average gain was found close to unity as it should be and the element currents 

were found to be equal in amplitude as they should be for the symmetric drive which was 

applied. The progressive element phase shifts of 90° are cycled through each element and 

performance is checked for symmetry, which is shown to be valid. 

20 



The second trial location of the antenna elements is on the intersection of two 

rectangular patches between two triangular surfaces at four sides (Figure 10). In this case, 

minimum gain is -14.5 dBi which is worse than minimum of the first location (Figure 9). 

bottom view 
BFT^i 

I 

side view 

Figure 9. First Location of Antenna Elements. 
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3 
bottom view side view 

Figure 10. Second Location of Antenna Elements. 

At this second trial location antenna elements are raised upward with the 

symmetric angle orientation as shown in Figure 11. The minimum gain of the antenna 

system becomes -13.6 dBi. 

22 



At the other rectangular intersection locations, the worst nulls are not any better 

than the worst null observed at the second trial locations. 

The third trial location is the upper triangular parts of PANS AT. First, antenna 

elements are placed at the lower edge of the triangles (Figure 12). Antenna elements are 

oriented as in the previous example, and minimum gain becomes -6.85 dBi, an 

improvement. Input impedance is 47+J1.90 with an average gain of 0.98. The 

improvement in worst null provides encouragement to try more triangular locations. 

Next, elements are moved upward one fourth of the distance between the middle 

lower edge of the triangle and its vertex. In this case, the worst null becomes -4.2 dBi, 

with an average gain of 0.97. Antenna input impedance is 59.3+J5.04Q. Antenna 

elements are then moved upward, as before, to a location almost in the center of triangles 

(Figure 13). The minimum gain is -2.74 dBi, input impedance is 73+J4.5Q, and average 

gain is 0.98. 

23 



3W 

/ \ 

X 

\ \ I 
\ 

(/yrrx\ 
bottom view 

side view 

Figure 11. New Orientation of Antenna Elements at the Second Location. 
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Figure 12. Third Location of Antenna Elements. 
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Figure 13. Fourth Location of Antenna Elements. 

26 



The antenna elements are then moved to points between the upper corner and the 

center of the triangles to study changes in the worst null, in this case -2.17 dBi. Input 

impedance is 94.3+J24.4Q, with an average gain of 0.94. 

The radiation pattern and polarization of the antenna system is checked for each 

position of the elements. The current distributions on the PANSAT body and antenna 

elements are stable. These results meet the specifications. Therefore, the antenna 

elements will be mounted at these points. 

2.    Angular Orientation of the Antenna Elements 

After the location of the antenna elements on the PANSAT body is found, the next 

task is to find the best orientation angles. In spherical coordinates, the antenna elements 

form two angles, "angle 0" from the z-axis and "angle <|>" from the x-axis (Figure 14). 

Antenna system performance is tested by changing the angles while keeping the 

position, the length, and the radius of antenna elements constant. Physically, the geometry 

of the satellite limits the maximum change in angle. For angle changes in the <\> plane, only 

changes for the 0° phase feed element are mentioned in following sections, the other 

elements being tilted in 90° progressions. Angles from 0° to 135° in the 0 plane, and 

angles from 0° to 170° and from 0° to -135° in the § plane, are tested. 

First, an angle change in 0 is tested at <J> = 0, then <]) is varied for fixed 0. 

27 
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Figure 14. Orientation of Antenna Elements in The 0 and <)) Planes. 
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For each angle, the dependent parameters (input impedances, minimum, and 

maximum ) are checked while radiation patterns are plotted. In the 0 plane, angles up to 

55° produce no nulls exceeding -3 dBi. Input impedances and average gain values are 

about 45-J5 Q and 0.95, respectively. As a result, angles 0° to 55° in 9 and 0° in § are 

close to the specifications for the PANSAT antenna system. However, when the radiation 

patterns are compared, the antenna with 0 = 45° has the most omnidirectional pattern, 

and is the angle of choice. Figure 15 shows the orientation of antenna elements for 0 = 

45° and $ = 0°, while Figure 16 shows the radiation pattern of the antenna system seen at 

0 = 90° and <|> = 45°. 

The antenna elements are tilted -Hj>' and -<(>' degrees from the position of antenna 

elements at d> = 0°, 90°, 180°, 270° with 0 at 45°. For +<{>' angles, from 0° to 20°, the 

worst nulls do not exceed -3 dBi. Another angle which gave the same performance is 

<])' = 150°, with an average gain of 1.03. Beyond 150° the gain increases and the segments 

of antenna close to the antenna-body connection point begin to enter into the volume of 

the body segments on the PANSAT wire grid which establishes a limit on §'. 
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Figure 15. Orientation of Antenna System for 9 = 45°. 
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For +<J)' angles, from 0° to 55°, the worse null is less than -3 dBi, with 9 at 45° 

(Figure 17). 

The antenna elements could not be tilted more than §' = 55°, because the antenna 

segments close to the connection point began to enter the volume nearby wire grid 

segments. Therefore, 9 is changed from 45° to raise the antenna element in + z direction. 

Table III shows the ())' angles at which the worst null is better than -3 dBi with 9 at 45°. 

9 (deg.) <))' (deg) Worst Null (dBi) Average Gain (dB) 
50 70 -2.8 1.05 
55 75 -2.7 .96 

80 -2.5 .97 
85 -2.4 .98 
90 -2.2 1.01 

75 90 -2.2 .91 
80 85 -2.0 .92 

90 -2.0 .92 
100 -2.0 .92 
135 -2.5 .92 

Table III. Performance for Tested Tilt Angles in the § Direction. 
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Detailed performance values for all the angles tested are presented in Appendix A. 

3.    Statistical Approach 

Test of § plane angles show that there are a number of configurations which 

produce sastisfactory performance. Radiation patterns of these configurations provide 

almost the same coverage. The minimum nulls do not exceed -3 dBi. As a result, the 

analysis so far does not identify a preferred value for §. Thus, a statistical approach is 

employed. Since the satellite is a tumbling body, there is no way to tell which side of 

satellite body and which side of the radiation pattern will face the earth more often than 

any other. Consequently, the directive gain of the antennas can be treated as a random 

variable. The histograms of directive gain distribution over the 6 and § planes are plotted 

for each angle, and are grouped into two parts: 

• More omnidirectional distributions. 

• Non-omnidirectional distributions. 

Angle configurations which do not provide minimum nulls better than -3 dBi are 

not considered. For an omnidirectional radiation pattern, directive gain distributions 

should show balance between positive and negative values. For the antenna angle 

orientation shown in Figure 18, the directive gain distribution (Figure 19) shows balanced 

values. Most other angle orientations did not show the same balanced distribution. 

Figures 20 and 21 are examples of unbalanced directive gain distributions,with negative 

inclined values. 
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Some of the angle configuration which have balanced directive gain distribution 

produce antenna input impedances that had smaller real part than the input inpedance for 9 

= 45° and <|) = 0 (47.6-59.4Q). Figure 22 is an example of one of these with balanced 

directive gain distributions. For 0 = 45° and <|> = -25° (Figure 22) the antenna input 

impedance was 33 - J60.1. Therefore, directive gain distribution for 6 = 45°, § - 0 stood 

out among directive gain distributions of other angle configurations. 

<t> = 0° 

ri 
<t» = 27(f 

L-J. Y X 

<)> =180 ^S 
bottom view 

side view 

Figure 18. Final Orientation of the PANS AT Antenna System. 
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4.    Impedance 

The location of the antenna and the angles in the 6 and § planes have been chosen. 

The next step is to adjust antenna input impedance. This is accomplished by repeatedly 

changing the lengths of antenna elements, noting the resulting input impedances. The real 

and imaginary parts of input impedance are shown in Figure 23. Detailed results are in 

Appendix B. The final decision on length of the antenna elements is explained in the next 

chapter. 

D.    SUMMARY OF THE MODIFICATION PROCESS 

Before the modification process was started, the NEC PANSAT model without 

the LVI was run. The results of this were compared with the output for the model with 

the LVI. The main effect of the LVI showed in the minimum pattern gain for the same 

antenna locations of both models. Antenna positions on PANSAT, the length, and the 

angle orientation were treated as independent parameters in the modification process. 

These parameters affected the gain, pattern, and input impedance which were the 

dependent parameters. Each independent parameter was changed while others were kept 

constant. Performance was noted as the radiation pattern, polarization, antenna, and input 

impedance for each successive change. A gain histogram was used to determine the best 

orientation of the antenna elements because the performance analysis showed the similar 

results for most of the suitable angles. 
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Figure 23.. Antenna Input Impedance vs. Antenna Element Length. 
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III.    THE ANTENNA FEED SYSTEM 

A. SPECIFICATIONS FOR THE PANSAT ANTENNA FEED 
SYSTEM 

The PANSAT communication system consists of a transceiver rather than a 

separate transmitter and receiver, requiring a single 50Q connection point. The maximum 

allowed VSWR is 1.4:1. The PANSAT antenna feed system must be easily mountable. In 

addition the cables and other materials used must meet standards required for a mission in 

space. Table IV summarizes the specifications for the antenna feed system. 

 One connection point.  

 50 Q transmission lines.  

VSWR =1.4:1  

 Easily mountable  

 Suitable connectors and cables for space-based mission.  

Table IV. Requirements of the PANSAT Antenna Feed System. 

B. DESIGN GOALS FOR THE ANTENNA FEED SYSTEM 

Mismatch at the antenna causes some percentage of the power to bounce back to 

the transmitter from the antenna. Some of this power, while bouncing back and forth, is 

lost due to attenuation on the transmission lines. For receiving, antenna mismatch causes 

some back scattering of the power captured by the antenna.   Since the antenna elements 
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are connected via transmission lines, good impedance match will prevent power being lost 

between the antenna and either the transmitter or the receiver. 

In this case antenna input impedance can be adjusted to become either 70.8-jO.8Q 

at resonance or 50.l-j52.31Q, depending on the length of the antenna elements. Table V 

shows the length of the antenna elements corresponding to these two impedances. 

Impedance (Q) Length 

m. l/X 

70.8-J0.8 .164 .238 

50.1-J52.3 .135 '   .196 

Table V. Input Impedance vs. Length of Antenna Elements. 

If the antenna elements with either of two input impedances are connected to a 

50 Q transmission line there will be a mismatch. The VSWR is 1.42 for 70.8-j52.3Q and 

2.74 for 50.1-J52.3Q. This will cause reflections along the transmission lines. A matching 

network is needed to prevent power loss resulting from attenuation in the transmissioin 

lines. An antenna feed system is proposed for each input impedance. The comparative 

performance of the two feed systems is described at the end of this chapter. 

C.    DESIGN ALTERNATIVES 

If 50.l-j52.3Q input impedance is chosen, then a feed system using stub tuners is 

adequate.   For 70.8-jO.8Q, the feed system will need impedance transformers.    The 

following two sections explain the two alternative impedance-matching systems. 
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1.    Using Stub Tuners 

The load impedance of 50.l-j52.3Q is to be connected to a 50Q coax cable. 

Adding a specific length of electrically shorted coax cable to a point at a certain distance 

from the load, results in a matched 50Q input impedance. Figure 24 shows the length of 

the stub and distance from the load for the single stub matching system. 

Zjn-60 

tl 

(distance from load 
=.076 X-0.052 m. 

oJ 

Z = 50.1 - 52.3J 

■stub = length of the stub = .118 X = .081 m 

Figure 24. Single Stub Matching. 

The single stub should be connected to each antenna element at the distance and 

length depicted in Figure 24. Figure 25 shows the feeding system of the antenna elements 

with stub tuners. 
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Figure 25. The PANS AT Antenna Feed System with Single Stub Tuners. 

2.    Using Impedance Matching Transformers 

In this case antenna input impedance is to be adjusted to 70.9-jO.9Q. The 

matchinng can be accomplished by using a quarter wave impedance transformer. The 

required impedance is ^f^\x5Ö = 59.6Q. This transformer can be easily realized in 

micro strip. 
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Figure 26. The PANSAT Antenna Feed System with 75D to 50Q Impedance 
Transformer. 

D.    COMPARISON OF DESIGN ALTERNATIVES 

Both of the designs make use of lengths of coax cable to feed each antenna 

element with a 90° phase shift relative to the adjacent element. These lengths also act as 

quarter wavelength transformers, which have characteristic impedance 

zo = Vzin zi°ad = V25xl00 = 50Q, where zioad is the impedance of load and zm is the desired 

impedance to be observed from the source side of the quarter wavelength impedance 

transformer. The length of the transmission lines is important in both of the designs. 
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The frequency range is from ft = 435.25MHz to fh = 437.75 MHz.   When the 

lengths are calculated at the center frequency (f0 = 436.5 MHz) the electrical length of the 

transmission lines will change with frequency 

The band-limits wavelength ratios are: 

h.=k=0.99713 
Xt    f0 

ha=k=1.0022 

Note the 0.3% error in the fixed length of transmission lines compared to the center 

frequency, fo. 

In the frequency range from f^ and fh, antenna input impedance changes. NEC is 

run with the frequency sweep of this range to observe the impedance changes. For the 

0.164 m. long element, the impedance values varied from 70.7-jl.6£2 to 71-J1.5Q. The 

75 Q to 5 0f2 impedance transformer can tolerate this impedance variation. For the antenna 

element length of 0.135 m. the impedance show a variation from 50.04-j53.lQ to 50.2- 

J51.6Q. Since the length of the stub and the distance from the load is fixed in the single 

stub matching system, the electrical lengths will change with frequency, and the matched 

load impedance will not be exactly 50Q. Table VI shows the variation of VSWR for the 

frequency range for antenna elements of 0.135 m. 
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Frequency (MHz) VSWR (After the Stub) Required VSWR 

fh = 437.75 1.024 1.4 

fo = 436.5 1 1.4 

f; = 436.25 1.12 1.4 

Table VI. VSWR vs. Frequency with .135 m. Antenna Element Lengths. 

The single stub matching feed system can use the same type of coax cable. Ready- 

to-fly cables can be easily found. The microstrip impedance transformer must be space- 

worthy. 

Both of the alternative feed systems meet specifications. One of the two antenna 

feed systems can be chosen after the length of the antenna elements is chosen. 
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IV.    CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY OF THE PROCEDURE 

In this thesis the existing PANSAT antenna system was modified to overcome the 

effects of adding the LVI. The NEC program was used to predict the performance of the 

antenna elements as they are changed progressively to produce a design that provides 

optimum performance. 

First, the location of the antenna elements was changed until the radiation patterns 

were acceptable and the minimum gain was greater than -3 dBi. Second, the orientation 

angle of the antenna elements was changed. A statistical approach was then used to find 

the orientation angle that gave the worst nulls less than -3 dBi. 

Last, the length of the antenna elements was changed to achieve the input 

impedances of 70.8-jO.8Q or 50.l-j52.3Q. Two input impedance values were chosen and 

two alternative antenna feed systems were proposed. After each iteration in position, 

angle and length, performance analysis was repeated to prove the design was acceptable. 

B. FINAL ANTENNA DESIGN AND FEED SYSTEM 

The tangential turnstile antenna of PANSAT is to be configured with four 

monopole antenna elements. Each antenna element is to be placed on the body of the 

PANSAT as shown in Figure 27. 
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Figure 27. The Final Tangential Turnstile Antenna of PANS AT. 

The final design produced a minimum gain of-2.7 dBi and maximum of 4.4 dBi. 

Two alternative feed systems are proposed with coaxial cable lengths chosen for the 

frequency of operation. 
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C. CONCLUSIONS 

The final design of the tangential turnstile antenna for PANSAT can meet the 

mission specifications. The tangential turnstile antenna system can give near 

omnidirectional coverage for PANSAT, a tumbling satellite. 

The proposed impedance matching systems with stub tuners or impedance 

transformers can meet VSWR requirements. Both of them meet the mission requirements 

ofPANSAT. 

D. RECOMMENDATIONS 

The antenna system should be tested to verify the results of the NEC outputs. The 

satellite must be duplicated electromagnetically by simulating all conducting surfaces of 

the satellite. This model can be either metal or wood covered with metal, and must be 

removed from all reflecting and conducting objects by a distance which will ensure that the 

measured fields are not contaminated. 

Antenna gain values change from -2.7 to 4.5 dB. If the reflection interference can 

be kept -10 dB less than then the minimum of the antenna gain variation, accuracy of the 

measurement becomes 5%. The external cables connected to body of the satellite must be 

arranged to be electromagnetically transparent. These cables should not carry any current 

from the satellite. If this can not be provided, the transmitting equipment can be mounted 

in the trunk of the satellite and be operated by battery. 

Since no study based on pattern purity requirements is available at the time of this 

thesis, the level of the acceptable field contamination is not given here.  The decision on 
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the impedance choice of the antenna elements must be made, which affects the choice of 

the antenna feed system. 
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APPENDIX A. PERFORMANCE OF CONFIGURATION ANGLES 

Each angle configuration produces different results. Table VII summarizes the 

variations of angles and their corresponding performance values. For § angle values only, 

the § angle of the 0° phase fed antenna element is given. The other three elements are 

phase-shifted incrementally by 90°. 

ANGLE 
(deg.) 

GAIN (dBi) IMPEDANCE (Q) AVERAGE GAIN (dB.) 

e ♦ Min. Max. 

0 0 -2.7 3.6 44.4-j 35.5 .93 

5 0 -2.2 3.7 43.4 - j 48.2 .93 

10 0 -1.7 2.7 46 - j 48 .93 

15 0 -2 3.9 47.5-j 51 .94 

20 0 -2 3.9 49.1-j 51.4 .94 

25 0 -2.1 4 49.6-j 53.6 .94 

30 0 -2.2 4.1 50 - j 54.6 .95 

45 0 -2.6 4.6 47.6-j 59.5 .96 

55 0 -3.2 4.7 44.5-j 61.1 .97 

90 0 -4.9 4.6 12.6-j 1 .94 

135 0 -10.2 5.2 2.5-j 6 1.0 

45 10 -2.8 4.5 50.9-j 58.6 .96 

45 20 -2.9 4.6 53.6-j 58 .95 

45 30 -3.1 4.7 55.4-j 57.9 .95 

45 45 -3.2 4.8 56.5 - j 58.2 .95 

45 55 -3.1 4.8 56.1-j 58.3 .95 

Table VII. Performance Values vs. Configuration Angles. 
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ANGLE 
(deg.) 

GAIN (dBi) IMPEDANCE (Q) AVERAGE GAIN (dB.) 

0 ♦ Min. Max. 

45 65 -3.2 4.8 55.1-j 58.1 .95 

45 75 -3.4 4.8 53-j 58.7 .95 

45 90 -4.5 4.8 48.6-j 59.3 .96 

45 100 -5.4 4.8 65.1-j 59.2 .96 

45 110 -6.2 4.8 40.9-j 59. .96 

45 125 -6.8 4.6 34 -j 59.2 .96 

45 135 -6.1 4.4 29.3-j 55 .95 

45 140 -5.1 4.3 26.8-j 52.8 .96 

45 145 -3.4 4 23.8-j 45.3 .98 

45 150 -1.8 3.8 21 -j 36.3 1.0 

45 155 -1.4 3.8 16.9 -j 17.8 1.1 

45 160 -1.9 4.3 12.5+j 8.5 1.4 

45 -5 -2.5 4.4 45.8-j 59.7 .96 

45 -10 -2.6 4.3 43.8-j 59.8 .96 

45 -15 -2.6 4.2 41.8-j 60.1 .97 

45 -20 -1.9 3.6 44.5-j 48.8 .93 

45 -25 -1.6 4 37.5 - j 60.4 .97 

45 -30 -2.6 3.9 35.3-j 60.2 .97 

45 -35 -2.6 3.8 33-J60 .97 

45 -45 -2.8 3.4 28.5 - j 57.6 .96 

45 -50 -2.9 3.2 26.1-j 54.9 .97 

45 -55 -3 2.8 23.7-j 49.9 .98 

45 -60 -3.1 2.6 21-j 41.2 1.0 

45 -65 -3 3.3 17.6-j 25 1.1 

Table VII. Performance Values vs. Configuration Angles. 
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ANGLE 
(dea) 

GAIN (dBi) IMPEDANCE (Q ) AVERAGE GAIN (dB.) 

e ♦ Min. Max. 

45 -70 -2.6 4.3 12.9+j 4.7 1.3 

50 155 -2.3 3.8 20.2-j 3 1.0 

50 160 -1.5 3.9 16.6-j 16.8 1.0 

50 170 -5.5 4 15.2 -j 19.7 .94 

50 -70 -2.8 2.5 17.2-j 23.1 1.0 

50 -75 -2. 2.8 13.2 -j 4.2 1.1 

52 170 -3.5 4.4 11.9 +j 1.3 1.1 

55 160 -4.2 3.8 21.3-j 34. .94 

55 70 -.7 5.2 8.5-j 29.6 1.4 

55 -75 -2.7 2.7 17.7-j 30.2 .96 

55 -80 -2.6 2.8 14.5 -j 22.7 .97 

55 
-85 -2.4 3 11.3-j 15.8 .98 

55 -90 -2.2 3.9 46.7 - j 48.6 .93 

60 -180 -12.7 4 15.2 -j 43.3 .81 

80 10 -2 3.8 46.7-j 49.1 .93 

80 20 -2.1 3.8 47.7-j 49.1 .93 

80 85 -3.3 3.9 46.7-j 48.6 .93 

80 140 -3.8 3.8 39.4-j 46.9 .92 

80 150 -3.8 3.7 35.5-j 46.7 .92 

80 160 -3.6 3.6 34.7 - j 26.2 .91 

80 170 -3.7 3.7 34.6-j 46 .91 

80 -10 -1.9 3.7 44.6-j 68.7 .93 

80 -20 -1.9 3.7 44.5-j 48.8 .93 

80 -85 -2 .3.3 33.4-j 46.7 .92 

80 -90 -2 3.3 32.8-j 46.5 .92 

Table VII. Performance Values vs. Configuration Angles. 
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ANGLE 
(deg.) 

GAIN (dBi) IMPEDANCE (Q) AVERAGE GAIN (dB.) 

e «t, Min. Max. 

80 -100 -2 3.3 31.7-j 46.2 .91 

80 -135 -2.5 3.3 29.9-65.1 .91 

80 -180 -3.5 3.6 32.8-j 46.2 .92 

Table VII. Performance Values vs. Configuration Angles. 
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APPENDIX B. INPUT IMPEDANCES VS. ANTENNA ELEMENT 
LENGTHS 

Table VIII shows the impedance of the antenna elements for different element 

lengths at 9 = 45° (j) = 0°, the parameters used for the final antenna design. 

ANTENNA ELEMENT LENGTH IMPEDANCE 

in m. in A.. 

.089 .130 23.0-j 147.2 

.096 .140 26.3 -j 130.8 

.103 .150 29.8-j 115.4 

.109 .160 33.3-j 101.3 

.113 .165 35.4-j 93.7 

.116 .170 38.5-j 88.0 

.120 .175 40.5-j 81.2 

.123 .180 42.6 - j 74.4 

.127 .185 44.8-j 67.8 

.130 .190 46.9-j 61.3 

.134 .195 49.1-j 55.2 

.134 .196 49.8-j 53.1 

.135 .196 49.9-j 52.8 

.135 .196 50.1-j 52.3 

.135 .197 50.4-j 51.5 

.137 .200 51.4-j 48.6 

.140 .205 54.0-j 41.5 

.144 .210 56.2-j 35.9 

.147 .215 58.4 - j 30.2 

.151 .220 60.8 - j 24.3 

.154 .225 63.3-j 18.1 

.158 .230 66.5 - j 10.7 

.161 .235 68.6-j 5.7 

Table VIII. Input Impedances vs. Antenna Element Length. 
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ANTENNA ELEMENT LENGTH IMPEDANCE 

in m. in X. 

163 .Til 69.7 - j 3.3 

164 .238 70.8 -jO.O 

164 .240 71.1 +j 1.3 

168 .245 75.3 +j 1.5 

171 .250 77.6 +J8.8 

178 .260 82.3 +J23.3 

192 .280 92.2 +J42.2 

206 .300 108.1-j 70.0 

219 .320 127.2+j 101.4 

233 .340 136.8+j 113.1 

261 .380 172.2+j 123.4 

288 .420 196.8+j 157.4 

412 .600 212.4+j 198.7 

549 .800 418.1+j 286.2 

687 1.00 557.6+j 332.6 

Table VIII. Input Impedances vs. Antenna Element Length. 
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APPENDIX C. NEC-4 INPUT FILE 

CM NEC-4 FILE 
CE 
GU1,2,.218,0.,-.108,.218,0.,-.024,.007, 
GW2,2,.218,0.,-.024,.218,0.,.06,.007, 
GW3,2,.218,0.,-.024,.218,-.09,-.024,.007, 
GW4,2,.218,0.,-.024,.218,.09,-.024,.007, 
GW5,2,.218,.09,.06,.218,0.,.06,.007, 
GW6,2,.156, 
GW7,2,.218, 
GW8,2,.156,l 
GW9,2,.218, 
GW10,2,.218 
GU11, 
GW12 
GW13 
GW14 
GW15 
GW16 
GW17 
GW18 
GW19 
GW20 
GW21 
GU22 
GW23 
GW24 
GW25 
GW26 
GW27 
GU28 
GW29 
GW30 
GW31 
GW32 
GW33 
GW34 
GW35 
GW36 
GW37 
GW38 
GW39 
GW40 
GW41 
GW42 
GW43 
GW44 
GW45 
GW46 
GW47 
GU48 
GW49 
GW50 
GW51 
GW52 
GW53 
GU54 
GW55 
GW56 
GU57 
GW58 
GW59 
GW60 
GU61 

.218 

.09, 

.156 

.09, 

.218 

.156 

.218 

.156 

.218 

.218 

.218 

.09, 

.156 

.09, 

.218 

.154 

.218 

.154 

.218 

.218 

.218 

.09, 

.154 

.09, 

.218 

.154 

.218 

.154 

.218 

.218 

.218 

.09, 

.154 

.09, 
-.09 
.09, 

.09, 

■09, 
-.09 

■09, 
0.,. 
-.09 

09, 
-.09 
0.,. 
.09, 
-.09 

092,.127,.156,0.,.127,.007, 
.09,.06,.218,0.,.06,.007, 
.,.127,.156,-.092,.127,.007, 
09,.06,.156,.092,.127,.005, 
0.,.06,.156,0.,.127,.007, 
-.09,.06,.156,-.092,.127,.005, 
09,.194,.156,.092,.127,.005, 
0.,.127,.09,0.,.194,.007, 
.09,.194,.156,-.092,.127,.005, 
-.09,-.108,.218,0.,-.108,.007, 
-.092,-.175,.156,0.,-.175,.007, 
.09,-.108,.218,0.,-.108,.007, 
0.,-.175,.156,.092,-.175,.007, 
-.09,-.108,.156,-.092,-.175,.005, 
0.,-.108,.156,0.,-.175,.007, 
.09,-.108,.156,.092,-.175,.005, 
.09,-.242,.156,-.092,-.175,.005, 
0.,-.175,.09,0.,-.242,.007, 
09,-.242,.156,.092,-.175,.005, 
.09,-.108,.218,.09,-.024,.007, 
.154,-.108,.154,.154,-.024,.007, 
.09,.06,.218,.09,-.024,.007, 
.154,-.024,.154,.154,.06,.007, 
.09,-.108,.154,.154,-.108,.005, 
.09,-.024,.154,.154,-.024,.007, 
.09,.06,.154,.154,.06,.005, 
218,-.108,.154,.154,-.108,.005, 
.154,-.024,.09,.218,-.024,.007, 
218,.06,.154,.154,.06,.005, 
-.09,-.108,.218,-.09,-.024,.007, 
-.154,-.108,.154,-.154,-.024,.007, 
-.09,.06,.218,-.09,-.024,.007, 
-.154,-.024,.154,-.154,.06,.007, 
-.09,-.108,.154,-.154,-.108,.005, 
-.09,-.024,.154,-.154,-.024,.007, 
-.09,.06,.154,-.154,.06,.005, 
.218,-.108,.154,-.154,-.108,.005, 
-.154,-.024,.09,-.218,-.024,.007, 
.218,.06,.154,-.154,.06,.005, 
.218,-.024,0.,.218,-.024,.007, 
218,-.024,0.,.218,-.024,.007, 

0.,.218,-.024,0.,.218,.06,.007, 
218,.06,.09,.218,-.024,.007, 

0...218,-.024,0...218,-.108,.007, 
218,-.108,.09,.218,-.024,.007, 
218,-.108,0.,.218,-.108,.007, 

.092,.156,-.175,0.,.156,-.175,.007, 
218,-.108,0.,.218,-.108,.007, 
56,-.175,.092,.156,-.175,.007, 
218,-.108,-.092,.156,-.175,.005, 

0.,.218,-.108,0.,.156,-.175,.007, 
218,-.108,.092,.156,-.175,.005, 
.09,-.242,-.092,.156,-.175,.005, 
56,-.175,0.,.09,-.242,.007, 
09,-.242,.092,.156,-.175,.005, 
.218,.06,0.,.218,.06,.007, 
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GW62,2,-.092,.156,.127,0.,.156,.127,.007, 
GW63,2,.09,.218,.06,0.,.218,.06,.007, 
GW64,2,0.,.156,.127,.092,.156,.127,.007, 
GW65,2,-.09,.218,.06,-.092,.156,.127,.005, 
GW66,2,0.,.218,.06,0.,.156,.127,.007, 
GW67.2,.09,-218,.06,.092,.156,.127,.005, 
GW68,2,-.09,.09,.194,-.092,.156,.127,.005, 
GW69,2,0.,.156,.127,0.,.09,.194,.007, 
GW70,2,.09,.09,.194,.092,.156,.127,.005, 
GU71,2,-.09,.218,-.108,-.09,.218,-.024,.007, 
GW72,2,-.154,.154,-.108,-.154,.154,-.024,.007, 
GW73,2,-.09,.218,.06,-.09,.218,-.024,.007, 
GW74,2,-.154,.154,-.024,-.154,.154,.06,.007, 
GW75,2,-.09,.218,-.108,-.154,.154,-.108,.005, 
GU76,2,-.09,.218,-.024,-.154,.154,-.024,.007, 
GW77,2,-.09,.218,.06,-.154,.154,.06,.005, 
GW78,2,-.218,.09,-.108,-.154,.154,-.108,.005, 
GW79,2,-.154,.154,-.024,-.218,.09,-.024,.007, 
GU80,2,-.218,.09,.06,-.154,.154,.06,.005, 
GW81,2,.09,.09,-.242,0.,.09,-.242,.007, 
GW82,2, .09,0,-.242, 0,0,-.242, .007 
GW83.2, -.09,.09,-.242, 0,.09,-.242, .007 
GW84,2,0.,0.,-.242,-.09,0.,-.242,.007, 
GW85,2,.09,.09,-.242,.09,0.,-.242,.007, 
GW86,2,0.,.09,-.242,0.,0.,-.242,.007, 
GU87,2,.09,-.09,-.242,.09,0.,-.242,.007, 
GW88,2,0.,0.,-.242,0.,-.09,-.242,.007, 
GW89,2,.09,-.09,-.242,0.,-.09,-.242,.007, 
GW90,2,.092,-.156,-.175,0.,-.156,-.175,.007, 
GW91,2,-.09,-.09,-.242,0.,-.09,-.242,.007, 
GW92,2,0.,-.156,-.175,-.092,-.156,-.175,.007, 
GU93,2,.09,-.09,-.242,.092,-.156,-.175,.005, 
GW94,2,0.,-.09,-.242,0.,-.156,-.175,.007, 
GW95,2,-.09,-.09,-.242,-.092,-.156,-.175,.005, 
GU96.2,.09,-.218,-.108,.092,-.156,-.175,.005, 
GW97,2,0.,-.156,-.175,0.,-.218,-.108,.007, 
GW98,2,-.09,-.218,-.108,-.092,-.156,-.175,.005, 
GW99,2,-.09,-.09,-.242,-.09,0.,-.242,.007, 
GW100,2,-.156,-.092,-.175,-.156,0.,-.175,.007, 
GW101,2,-.09,.09,-.242,-.09,0.,-.242,.007, 
GW102,2,-.156,0.,-.175,-.156,.092,-.175,.007, 
GW103,2,-.09,-.09,-.242,-.156,-.092,-.175,.005, 
GU104,2,-.09,0.,-.242,-.156,0.,-.175,.007, 
GW105,2,-.09,.09,-.242,-.156,.092,-.175,.005, 
GW106,2,-.218,-.09,-.108,-.156,-.092,-.175,.005, 
GW107.2,-.156,0.,-.175,-.218,0.,-.108,.007, 
GW108,2,-.218,.09,-.108,-.156,.092,-.175,.005, 
GW109.2,.09,.09,.194,0.,.09,.194,.006, 
GU110,2,-.09,.09,.194,0.,.09,.194,.006, 
GU111,2,.09,-.09,.194,.09,0.,.194,.006, 
GW112,2,.09,.09,.194,.09,0.,.194,.006, 
GU113,2,.09,-.09,.194,.092,-.156,.127,.005, 
GW114,2,0.,-.09,.194,0.,-.156,.127,.007, 
GW115,2,-.09,-.09,.194,-.092,-.156,.127,.005, 
GW116,2,.09,-.218,.06,.092,-.156,.127,.005, 
GW117,2,0.,-.156,.127,0.,-.218,.06,.007, 
GW118,2,-.09,-.218,.06,-.092,-.156,.127,.005, 
GW119,2,.09,-.09,.194,0.,-.09,.194,.006, 
GU120,2,.092,-.156,.127,0.,-.156,.127,.007, 
GW121,2,-.09,-.09,.194,0.,-.09,.194,.006, 
GU122,2,0.,-.156,.127,-.092,-.156,.127,.007, 
GW123,2,.09,-.218,-.108,.09,-.218,-.024,.007, 
GW124,2,0.,-.218,-.108,0.,-.218,-.024,.007, 
GU125,2,.09,-.218,.06,.09,-.218,-.024,.007, 
GW126,2,0.,-.218,.06,0.,-.218,-.024,.007, 
GW127.2,.09,-.218,-.108,0.,-.218,-.108,.007, 
GW128.2,.09,-.218,-.024,0.,-.218,-.024,.007, 
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GW129.2 
GW130.2 
GW131.2 
GW132.2 
GW133.2 
GW134.2 
GW135.2 
GW136.2 
GW137,2 
GW138.2 
GU139.2 
GU140.2 
GU141.2 
GW142,2 
GW143.2 
GW144.2 
GW145.2 
GW146.2 
GW147,2 
GW148.2 
GW149.2 
GW150.2 
GW151.2 
GW152.2 
GW153.2 
GW154.2 
GW155.2 
GW156.2 
GU157.2 
GW158.2 
GU159,2 
GU160.2 
GW161.2 
GW162.2 
GU163.2 
GW164.2 
GW165.1 
GUI66,1 
GW167.2 
GU168.1 
GW169.2 
GU170,1 
GW171.1 
GU172.1 
GU173.2 
GW174.1 
GW175.2 
GW176.1 
GW177.1 
GU178.2 
GW179.1 
GU180.1 
GW181.2 
GW182.1 
GW183.1 
GW184.2 
GW185.1 
GW186.1 
GW187.2 
GW188.1 
GW189.5 
GW190.5 
GW191.5 
GW192.5 
GW193.1 
GU194,1 
GU195.1 

.09,-.218,.06,0.,-.218,.06,.007, 
-.09,-.218,-.108,0.,-.218,-.108,.007, 
0.,-.218,-.024,-.09,-.218,-.024,.007, 
-.09,-.218,.06,0.,-.218,.06,.007, 
-.09,-.218,.06,-.154,-.154,.06,.005, 
-.09,-.218,-.024,-.154,-.154,-.024,.007, 
-.09,-.218,-.108,-.154,-.154,-.108,.005, 
-.218,-.09,.06,-.154,-.154,.06,.005, 
-.154,-.154,-.024,-.218,-.09,-.024,.007, 
-.218,-.09,-.108,-.154,-.154,-.108,.005, 
-.09,-.218,.06,-.09,-.218,-.024,.007, 
-.154,-.154,.06,-.154,-.154,-.024,.007, 
-.09,-.218,-.108,-.09,-.218,-.024,.007, 
-.154,-.154,-.024,-.154,-.154,-.108,.007, 
-.09,-.09,.194,-.09,0.,.194,.006, 
-.156,-.092,.127,-.156,0.,.127,.007, 
-.09,.09,.194,-.09,0.,.194,.006, 
-.156,0.,.127,-.156,.092,.127,.007, 
-.09,-.09,.194,-.156,-.092,.127,.005, 
-.09,0.,.194,-.156,0.,.127,.007, 
-.09,.09,.194,-.156,.092,.127,.005, 
-.218,-.09,.06,-.156,-.092,.127,.007, 
-.156,0.,.127,-.218,0.,.06,.005 
-.218,.09,.06,-.156,.092,.127,.005, 
-.218,-.09,.06,-.218,0.,.06,.007, 
-.218,-.09,-.024,-.218,0.,-.024,.007, 
-.218,-.09,-.108,-.218,0.,-.108,.007, 
-.218,.09,.06,-.218,0.,.06,.007, 
-.218,.09,-.024,-.218,0.,-.024,.007, 
-.218,.09,-.108,-.218,0.,-.108,.007, 
-.218,-.09,.06,-.218,-.09,-.024,.007, 
-.218,0.,.06,-.218,0.,-.024,.007, 
-.218,.09,.06,-.218,.09,-.024,.007, 
-.218,-.09,-.108,-.218,-.09,-.024,.007, 
-.218,0.,-.108,-.218,0.,-.024,.007, 
-.218,.09,-.108,-.218,.09,-.024,.007, 
.092,-.156,.127,.124,-.124,.127,.003, 
.156,-.092,.127,.124,-.124,.127,.003, 
.154,-.154,.06,.124,-.124,.127,.006, 
.156,.092,.127,.124,.124,.127,.003, 
.154,.154,.06,.124,.124,.127,.006, 
.092,.156,.127,.124,.124,.127,.003, 
-.092,.156,.127,-.124,.124,.127,.003, 
-.156,.092,.127,-.124,.124,.127,.003, 
-.154,.154,.06,-.124,.124,.127,.006, 
-.156,-.092,.127,-.124,-.124,.127,.003, 
-.154,-.154,.06,-.124,-.124,.127,.006, 
-.092,-.156,.127,-.124,-.124,.127,.003, 
.092,-.156,-.175,.124,-.124,-.175,.003, 
.154,-.154,-.108,.124,-.124,-.175,.006, 
.156,-.092,-.175,.124,-.124,-.175,.003, 
-.156,.092,-.175,-.124,.124,-.175,.003, 
-.154,.154,-.108,-.124,.124,-.175,.006, 
-.092,.156,-.175,-.124,.124,-.175,.003, 
.092,.156,-.175,.124,.124,-.175,.003, 
.154,.154,-.108,.124,.124,-.175,.006, 
.156,.092,-.175,.124,.124,-.175,.003, 
-.156,-.092,-.175,-.124,-.124,-.175,.003, 
-.154,-.154,-.108,-.124,-.124,-.175,.006 
-.092,-.156,-.175,-.124,-.124,-.175,.003, 
.124,-.124,-.175,.2197,-.124,-.2707,.0045, 
.124,.124,-.175,.124,.2197,-.2707,.0045, 
-.124,.124,-.175,-.2197,.124,-.2707,.0045, 
-.124,-.124,-.175,-.124,-.2197,-.2707,.0045, 
-.078,.09,-2448,-.038,.09,.208,.0016, 
-.038,.09,.208,0.,.09,.194,.0035, 
0.,.09,.194,.038,.09,.208,.0035, 
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GW196 1, 
GW197 1, 
GW198 1, 
GW199 1, 
GW200 1, 
GW201 1, 
GW202 1, 
GW203 1, 
GW204 1, 
GU205 1, 
GW206 1, 
GW207 1, 
GW208 1, 
GW209 1, 
GU210 1, 
GW211 1, 
GU212 1, 
GW213 1, 
GW214 1, 
GW215 1, 
GW216 1, 
GW217 1, 
GW218 1, 
GU219 1, 
GU220 1, 
GW221 1, 
GU222 1, 
GW223 1, 
GU224 1, 
GW225 1, 
GW226 1, 
GW227 1, 
GW228 1, 
GW229 1, 
GW230 1, 
GW231 1, 
GW232 1, 
GW233 1, 
GW234 1, 
GW235 1, 
GW236 1, 
GW237 1, 
GW238 1, 
GW239 1, 
GW240 1, 
GW241 1, 
GW242 1, 
GW243 1, 
GU244 1, 
GU245 1, 
GU246 1, 
GW247 1, 
GW248 1, 
GW249 1, 
GW250 1, 
GU251 1, 
GU252 1, 
GU253 1, 
GW254 1, 
GU255 1, 
GW256 1, 
GW257 1, 
GU258 1, 
GW259 1, 
GW260 1, 
GW261 1, 
GU262 1, 

.038,.09,.208,.078,.09,-2448,.0016, 
-.09,.078,.2448,-.09,.038,.208,.0016, 
-.09,.038,.208,-.09,0.,.194,.0035, 
-.09,0.,.194,-.09,-.038,.208,.0035, 
-.09,-.038,.208,-.09,-.078,-2448,.0016, 
-.078,-.09,.2448,-.038,-.09,.208,.0016, 
-.038,-.09,.208,0.,-.09,.194,.0035, 
0.,-.09,.194,.038,-.09,.208,.0035, 
.038,-.09,.208,.078,-.09,.2448,.0016, 
.09,-.078,.2448,.09,-.038,.208,.0016, 
.09,-.038,.208,.09,0.,.194,.0035, 
.09,0.,.194,.09,.038,.208,.0035, 
.09,.038,.208,.09,.078,.2448,.0016, 
-.038,.09,.208,0.,.09,.208,.0021, 
0.,.09,.208,.038,.09,.208,.0021, 
-.078,.09,.2448,-.038,.09,.2448,.003, 
-.038,.09,.2448,0.,.09,.2448,.003, 
0.,.09,.2448,.038,.09,.2448,-003, 
.038,.09,.2448,.078,.09,.2448,.003, 
0.,.09,.2448,0.,.09,.208,.003, 
-.09,-.078,.2448,-.09,-.038,.2448,.003, 
-.09,-.038,.2448,-.09,0.,.2448,.003, 
-.09,0.,.2448,-.09,.038,.2448,.003, 
-.09,.038..2448,-.09,.078,.2448,.003, 
-.09,-.038,.208,-.09,0.,.208,.0021, 
-.09,0.,.208,-.09,.038,.208,.0021, 
-.09,0.,.2448,-.09,0.,.208,.003, 
.078,-.09,.2448,.038,-.09,.2448,.003, 
.038,-.09,.2448,0.,-.09,.2448,.003, 
0.,-.09,.2448,-.038,-.09,.2448,.003, 
-.038,-.09,.2448,-.078,-.09,.2448,.003, 
0.,-.09,.2448,0.,-.09,.208,.003, 
.038,-.09,.208,0.,-.09,.208,.0021, 
0.,-.09,.208,-.038,-.09,.208,.0021, 
.09,-078, .2448, .09, .038, .2448, .003, 
.09,.038,.2448,.09,0.,.2448,.003, 
.09,0.,.2448,.09,-.038,.2448,.003, 
.09,-.038,.2448,.09,-.078,.2448,.003, 
.09,0.,.2448,.09,0.,.208,.003, 
.09,.038,.208,.09,0.,.208,.0021, 
.09,0.,.208,.09,-.038,.208,.0021, 
0.,.09,.194,-.0517,.0735..194,.0021, 
-.0517,.0735,.194,-.0636,.0636,.194,.0021, 
-.0636,.0636,.194,-.0735,.0517,.194,.0021, 
-.0735,.0517,.194,-.09,0.,.194,.0021, 
-.09,0.,.194,-.0735,-.0517,.194,.0021, 
-.0735,-.0517,.194,-.0636,-.0636,.194,.0021, 
-.0636,-.0636,.194,-.0517,-.0735,.194,.0021, 
-.0517,-.0735,.194,0.,-.09,.194,.0021, 
0.,-.09,.194,.0517,-.0735,.194,.0021, 
.0517,-.0735,.194,.0636,-.0636,.194,.0021, 
.0636,-.0636,.194,.0735,-.0517,.194,.0021, 
.0735,-.0517,.194,.09,0.,.194,.0021, 
.09,0.,.194,.0735,.0517,.194,.0021, 
.0735,.0517,-194,.0636,.0636,.194,.0021, 
.0636,.0636,-194,.0517,.0735,.194,.0021, 
.0517,.0735,.194,0.,.09,.194,.0021, 
-.078,.09,.2448,-.0842,.0842,.2448,.0021, 
-.0842,.0842,.2448,-.09,.078,.2448,.0021, 
-.09,-.078,.2448,-.0842,-.0842,.2448,.0021, 
-.0842,-.0842,.2448,-.078,-.09,.2448,.0021, 
.078, - .09, .2448, .0842, - .0842, .2448, .0021, 
.0842,-.0842,.2448,.09,-.078,.2448,.0021, 
.09,.078,.2448,.0842,.0842,.2448,.0021, 
.0842,.0842,.2448,.078,.09,.2448,.0021, 
-.038,.09,.208,-.0545,.081,.208,.0021, 
-.0545,.081,.208,-.069,.069,.208,.0021, 
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GW263,1,-.069,.069,.208,-.081,.0545,.208,.0021, 
GW264,1,-.081,.0545,.208,-.09,.038,.208,.0021, 
GW265,1,-.09,-.038,.208,-.081,-.0545,.208,.0021, 
GU266,1,-.081,-.0545,.208,-.069,-.069,.208,.0021, 
GW267,1,-.069,-.069,.208,-.0545,-.081,.208,.0021, 
GW268,1,-.0545,-.081,.208,-.038,-.09,.208,.0021, 
GW269,1,.038,-.09,.208,.0545,-.081,.208, .0021, 
GW270,1,.0545,-.081,.208,.069,-.069,.208,.0021, 
GW271,1,.069,-.069,.208,.081,-.0545,.208,.0021, 
GW272.1,.081,-.0545,.208,.09,-.038,.208,.0021, 
GU273,1,.09,.038,.208,.081,.0545,.208,.0021, 
GW274.1,.081,.0545,.208,.069,.069,.208,.0021, 
GW275,1,.069,.069,.208,.0545,.081,.208,.0021, 
GU276,1,.0545,-081,.208,.038,.09,.208,.0021, 
GW277.1,-.0545,.081,.208,-.0636,.0636,-194,.0021, 
GW278,1,-.081,.0545,.208,-.0636,.0636,.194,.0021, 
GU279.1,-.081,-.0545,.208,-.0636,-.0636,.194,.0021, 
GW280.1,-.0545,-.081,.208,-.0636,-.0636,.194,-0021, 
GW281,1,.0545,-.081,.208,.0636,-.0636,.194,.0021, 
GW282.1,.081,-.0545,.208,.0636,-.0636,.194,.0021, 
GW283.1,.081,.0545,.208,.0636,.0636,-194,.0021, 
GW284.1,.0545,.081,.208,-0636,.0636,.194,.0021, 
GW285.1,-.0842,.0842,.2448,-.0545,.081,.208,.0021, 
GW286,1,-.0842,.0842,.2448,-.081,.0545,.208,.0021, 
GW287.1,-.0842,-.0842,.2448,-.081,-.0545,.208,.0021, 
GW288.1,-.0842,-.0842,.2448,-.0545,-.081,.208,.0021, 
GW289.1,.0842,-.0842,.2448,.0545,-.081,.208,.0021, 
GW290.1, .0842,-.0842,.2448,.081,-.0545,.208,.0021, 
GU291,1,.0842,.0842,.2448,.081,.0545,-208,.0021, 
GW292,1,.0842,.0842,.2448,.0545,.081,.208,.0021, 
GU293,2,0.,.09,.2448,0.,0.,.2448,.008, 
GW294,2,-.09,0.,.2448,0.,0.,.2448,.008, 
GU295,2,0.,-.09,.2448,0..0.,.2448,.008, 
GW296,2,.09,0.,.2448,0.,0.,.2448, .008, 
GE0,0, 
FRO,1,0,0,436.5,0-, 
EX0,189,2,0,1., 
EX0,190,2,0,0.,1-, 
EX0,191,2,0,-1-, 
EX0,192,2,0,0.,-1-, 
RP0,61,121,0011,0.,0.,3.,3.,0.,0-, 
EN 

61 



62 



LIST OF REFERENCES 

1. D. A. Ellrick, "An Antenna Design for PANSAT Using NEC," Master's Thesis, 
Naval Postgraduate School, Monterey, CA., June 1991. 

2. J. D. Kraus, Antennas, First Edition, Mc Graw-Hill, New York, NY, 1950. 

3. G. J. Burke, Numerical Electromagnetics Code NEC-4 Method of Moments Part I, 
User Manual, Lawrence Livermore National Laboratory, Livermore, C A, January, 
1992. 

63 



64 



BIBLIOGRAPHY 

Albertson, N. C, Hansen, J. E., and Jensen, N. E., "Numerical Prediction of Radiation 
Patterns for Antennas Mounted on Spacecraft," IEEE Conference Publication, no. 77, p. 
219, June 1971. 

Baianis, C. A., Antenna Theory, Analysis and Design, Harper & Row, New York, NY, 
1982. 

Elliot, R. S., Antenna Theory and Design, Prentice Hall, Inc., Engleewood Cliffs, NJ, 
1981. 

Hansen, R. C, Moment Methods in Antennas and Scattering, Artech House, Inc., 
Norwood, MA, 1990. 

King, R. W. P., Tables of Antenna Charectirictics, IFI/Plenum Data Corp., New York, 
NY, 1971. 

King, R. P . W., Smith, G. S., with Owens, M., Wu T. T., Antennas in Matter 
Fundamentals, Theory, and Applications, The MIT Press, Cambridge, MA, 1981. 

NASA HitchHiker Program PANSA T Customer Pay load Requirements Document, 
December, 20, 1994. 

Popovig, B. D.,Dragovig, M. B., and Djordjevig, A. R., Analysis and Synthesis of Wire 
Antennas, Research Studies Press, Sussex, NY, 1982. 

Rudge, A. W., Milne, K, Olver, A. D. and Knight, P., The Handbook of Antenna Design, 
vol. 2, Peter Peregrinus Ltd., London, UK, 1983. 

Rowsey, R., "Design Restrictions and Licensing for PANS AT," Master's Thesis, Naval 
Postgraduate School, Monterey, CA, September 1990. 

Stutzman, W. L. and Thiele, G. A., Antenna Theory and Design, Wiley Inc., New York, 
NY, 1981. 

Weiner, M. N, Cruze, S. P., Li, C. C, and Wilson, W. J., Monopole Elements on 
Circular Ground Planes, Artech House, Inc., Norwood, MA, 1987. 

65 



Wright, J. I, "The Porting of a Mainframe-Dependent Antenna Modeling Program (NEC- 
3) To a 32-Bit personal Computer," Master's Thesis, Naval Postgraduate School, 
Monterey, CA., June 1990. 

66 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 2 
Cameron Station 
Alexandria, VA 22304 - 6145 

2. Library, Code 52 2 
Naval Postgraduate School 
Monterey CA 93943-5101 

3. Chairman, Code EC 1 
Naval Postgraduate School 
Monterey CA 93943-5121 

4. Space Systems Academic Group, Code SP 1 
Naval Postgraduate School 
Monterey CA 93943-5110 

5. Professor Richard W. Adler, Code EC/Ab 2 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey CA 93943-5121 

6. David Rigmaiden, Code SP/Rd 1 
777 Dyer Rd., Rm., 20 0 
Monterey CA 93943-5110 

7. Daniel Skoda, Code SP/Sd 1 
777 Dyer Rd., Rm., 200 
Monterey CA 93943-5110 

8. Muhabere Destek Komutanligi Teknik Kutuphane 1 
MUDEKO 
Balgat/ANKARA/TURKEY 

9. Ercument Karapinar 1 
Zafer Mah. Gordion Cad. 
No: 112     62400 Polatli/ANKARA/TURKEY 

67 


